Timing Generator for Progressive Scan CCD Image Sensor

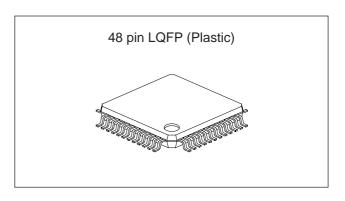
Description

The CXD2457R is an IC developed to generate the timing pulses required by Progressive Scan CCD image sensors as well as signal processing circuits.

Features

- Electronic shutter function
- Supports non-interlaced operation
- Base oscillation frequency 30.0MHz
- Horizontal drive frequency switchable between 15/10/5MHz
- Switchable between FINE (Progressive Scan) mode or DRAFT (high-frame rate readout) mode
- Vertical driver

Applications


Progressive Scan CCD cameras

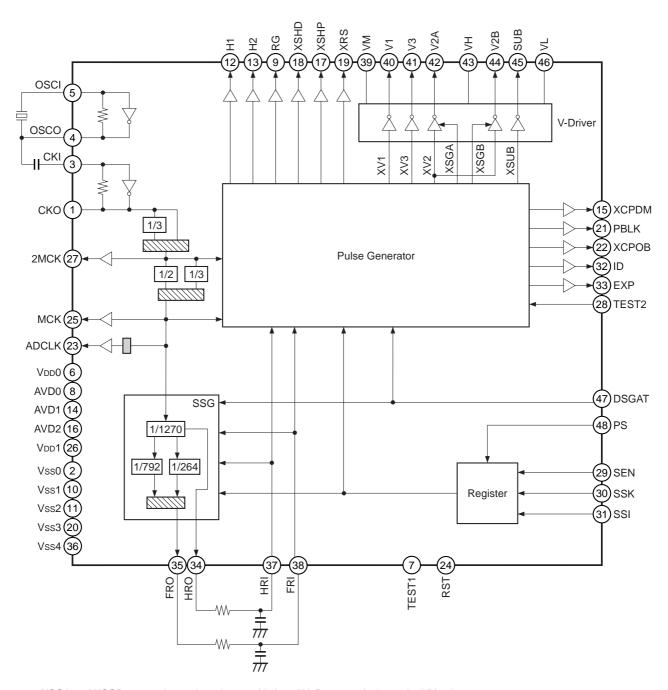
Structure

Silicon gate CMOS IC

Applicable CCD Image Sensor

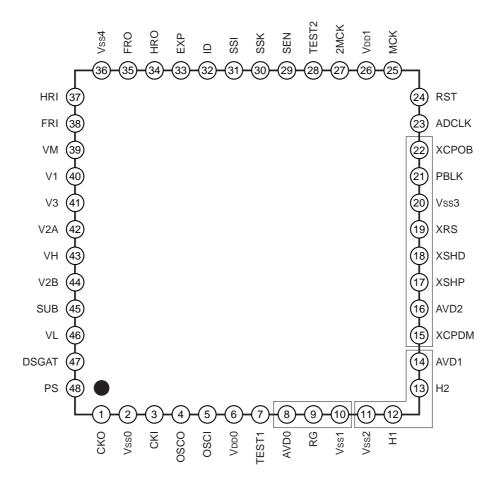
ICX204AK

Absolute Maximum Ratings


 Supply voltage 	Vdda,	VDDb, VDDc, VDDd	
		Vss - 0.5 to $Vss + 7.0$	V
 Supply voltage 	Vss	VL - 0.5 to $VL + 10.0$	V
 Supply voltage 	VH	VL - 0.5 to $VL + 26.0$	V
 Supply voltage 	VM	VL - 0.5 to $VL + 26.0$	V
 Input voltage 	Vı	$Vss-0.5\ to\ VdD+0.5$	V
 Output voltage 	Vo	$Vss-0.5\ to\ VdD+0.5$	V
Operating tempera	ature		
	Topr	-20 to +75	°C
Storage temperatu	ıre		
	Tstg	-55 to +150	°C

Recommended Operating Conditions

		,				
• Supply voltage 1 VDDa, VDDb, VDDc						
		3.0 to 3.6	V			
• Supply voltage 2	VDDd	3.0 to 3.6	V			
• Supply voltage 3	VH	14.25 to 15.75	V			
 Supply voltage 4 	VL	-9.0 to -5.0	V			
• Supply voltage 5	VM	0	V			
Operating temperating temperature	ature					
	Topr	-20 to +75	°C			


Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

 XSGA and XSGB are readout pulses that use V2A and V2B, respectively, as the VH value.

Pin Configuration (Top View)

The enclosed pins use separate power supplies.

Pin Description

1 CKO O Oscillator output. (30.0MHz) 2 Vss0 — GND 3 CKI I Oscillator input. (30.0MHz) 4 OSCO O Inverter output for oscillation. (30.0MHz) 5 OSCI I Inverter input for oscillation. (30.0MHz) 6 Vob0 — Power supply. 7 TEST1 I Test. With pull-down resistor. Fix to low. 8 AVD0 — Power supply. 9 RG O Reset gate pulse output. 10 Vss1 — GND 11 Vss2 — GND 12 H1 O Clock output for horizontal CCD drive. 13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse.		СКО		
3 CKI I Oscillator input. (30.0MHz) 4 OSCO O Inverter output for oscillation. (30.0MHz) 5 OSCI I Inverter input for oscillation. (30.0MHz) 6 Vob0 — Power supply. 7 TEST1 I Test. With pull-down resistor. Fix to low. 8 AVD0 — Power supply. 9 RG O Reset gate pulse output. 10 Vss1 — GND 11 Vss2 — GND 11 Vss2 — GND 11 Vss2 — GND 12 H1 O Clock output for horizontal CCD drive. 13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vob1 — Power supply. 27 2MCK O Clock output for fequency setting input. 29 SEN PS = High: Readout method setting input. 29 SEN PS = High: Shutter speed setting input. 29 SEN PS = High: Shutter speed setting input. 29 SE = Low: Serial setting clock input. 20 PS = Low: Serial setting clock input. 21 PS = Low: Serial setting data input.			0	Oscillator output. (30.0MHz)
4 OSCO O Inverter output for oscillation. (30.0MHz) 5 OSCI I Inverter input for oscillation. (30.0MHz) 6 Vob0 — Power supply. 7 TEST1 I Test. With pull-down resistor. Fix to low. 8 AVD0 — Power supply. 9 RG O Reset gate pulse output. 10 Vss1 — GND 11 Vss2 — GND 12 H1 O Clock output for horizontal CCD drive. 13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input nor reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vpb1 — Power supply. 27 2MCK O Clock output for flegital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting data input. PS = High: Shutter speed setting input. PS = Low: Serial setting glout. PS = Low: Serial setting input. PS = Low: Serial setting input.	2	Vss0	_	GND
5 OSCI I Inverter input for oscillation. (30.0MHz) 6 Vop0 — Power supply. 7 TEST1 I Test. With pull-down resistor. Fix to low. 8 AVD0 — Power supply. 9 RG O Reset gate pulse output. 10 Vss1 — GND 11 Vss2 — GND 12 H1 O Clock output for horizontal CCD drive. 13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vop1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Prive frequency setting input. PS = Low: Serial setting globat input. PS = Low: Serial setting input.	3	CKI	I	Oscillator input. (30.0MHz)
6 Voo0 — Power supply. 7 TEST1 I Test. With pull-down resistor. Fix to low. 8 AVD0 — Power supply. 9 RG O Reset gate pulse output. 10 Vss1 — GND 11 Vss2 — GND 12 H1 O Clock output for horizontal CCD drive. 13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Voo1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Power setting input. PS = Low: Serial setting glout. PS = Low: Serial setting input.	4	osco	0	Inverter output for oscillation. (30.0MHz)
7 TEST1 I Test. With pull-down resistor. Fix to low. 8 AVD0 — Power supply. 9 RG O Reset gate pulse output. 10 Vss1 — GND 11 Vss2 — GND 12 H1 O Clock output for horizontal CCD drive. 13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vpp1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting glout. PS = Low: Serial setting input.	5	OSCI	I	Inverter input for oscillation. (30.0MHz)
8 AVD0 — Power supply. 9 RG O Reset gate pulse output. 10 Vss1 — GND 11 Vss2 — GND 12 H1 O Clock output for horizontal CCD drive. 13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vbp1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Shutter speed setting input. PS = Low: Serial setting data input. 30 SSK I PS = High: Shutter speed setting input. PS = Low: Serial setting input. PS = Low: Serial setting input.	6	VDD0	_	Power supply.
9 RG O Reset gate pulse output. 10 Vss1 — GND 11 Vss2 — GND 12 H1 O Clock output for horizontal CCD drive. 13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vpo1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting data input. PS = Low: Serial setting input.	7	TEST1	I	Test. With pull-down resistor. Fix to low.
10 Vss1 — GND 11 Vss2 — GND 12 H1 O Clock output for horizontal CCD drive. 13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 4 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vbb1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting data input. 21 PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	8	AVD0	_	Power supply.
11 Vss2 — GND 12 H1 O Clock output for horizontal CCD drive. 13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vbb1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	9	RG	0	Reset gate pulse output.
12	10	Vss1		GND
13 H2 O Clock output for horizontal CCD drive. 14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vpb1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting clock input. 30 SSK I PS = High: Shutter speed setting input. PS = Low: Serial setting data input. 28 SEI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	11	Vss2		GND
14 AVD1 — Power supply. 15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vpb1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	12	H1	0	Clock output for horizontal CCD drive.
15 XCPDM O Clamp pulse. 16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vbb1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting liput.	13	H2	0	Clock output for horizontal CCD drive.
16 AVD2 — Power supply. 17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vbb1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Shutter speed setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	14	AVD1	_	Power supply.
17 XSHP O Sample-and-hold pulse. 18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vpp1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	15	XCPDM	0	Clamp pulse.
18 XSHD O Sample-and-hold pulse. 19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vbb1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	16	AVD2		Power supply.
19 XRS O Sample-and-hold pulse. 20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vop1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. PS = Low: Serial setting data input. PS = Low: Serial setting data input. PS = Low: Serial setting data input.	17	XSHP	0	Sample-and-hold pulse.
20 Vss3 — GND 21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 Vbb1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	18	XSHD	0	Sample-and-hold pulse.
21 PBLK O Blanking cleaning pulse. 22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). 25 MCK O Clock output for digital circuit. 26 VDD1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting clock input. 30 SSK I PS = High: Shutter speed setting input. PS = Low: Serial setting data input. PS = Low: Serial setting data input.	19	XRS	0	Sample-and-hold pulse.
22 XCPOB O Clamp pulse. 23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 VDD1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	20	Vss3	_	GND
23 ADCLK O Clock output for AD conversion. 24 RST I Reset (Low: Reset, High: Normal operation). 25 MCK O Clock output for digital circuit. 26 VDD1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	21	PBLK	0	Blanking cleaning pulse.
24 RST I Reset (Low: Reset, High: Normal operation). Always input one reset pulse during power-on. 25 MCK O Clock output for digital circuit. 26 VDD1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	22	ХСРОВ	0	Clamp pulse.
Always input one reset pulse during power-on. 25 MCK	23	ADCLK	0	Clock output for AD conversion.
26 VDD1 — Power supply. 27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	24	RST	I	
27 2MCK O Clock output for digital circuit. 28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	25	MCK	0	Clock output for digital circuit.
28 TEST2 I Test. Fix to high. 29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	26	VDD1	_	Power supply.
29 SEN I PS = High: Drive frequency setting input. PS = Low: Serial setting strobe input. 30 SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. 31 SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	27	2MCK	0	Clock output for digital circuit.
PS = Low: Serial setting strobe input. SSK I PS = High: Readout method setting input. PS = Low: Serial setting clock input. SSI I PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	28	TEST2	I	Test. Fix to high.
PS = Low: Serial setting clock input. SSI PS = High: Shutter speed setting input. PS = Low: Serial setting data input.	29	SEN	I	
PS = Low: Serial setting data input.	30	SSK	I	
32 ID O Line identification signal output write enable pulse output or XSUB output.	31	SSI	I	
	32	ID	0	Line identification signal output write enable pulse output or XSUB output.
33 EXP O Pulse output indicating exposure is underway or checksum result output.	33	EXP	0	Pulse output indicating exposure is underway or checksum result output.

Pin No.	Symbol	I/O	Description
34	HRO	0	Horizontal sync signal (HR) output or XSGB output.
35	FRO	0	Vertical sync signal (FR) output or XSGA output.
36	Vss4		GND
37	HRI	I	Horizontal sync signal (HR) input.
38	FRI	I	Vertical sync signal (FR) input.
39	VM	_	GND (vertical clock driver GND).
40	V1	0	Clock output for vertical CCD drive.
41	V3	0	Clock output for vertical CCD drive.
42	V2A	0	Clock output for vertical CCD drive.
43	VH		15V power supply (vertical clock driver power supply).
44	V2B	0	Clock output for vertical CCD drive.
45	SUB	0	CCD electric charge sweep pulse output.
46	VL	_	-7.5V power supply (vertical clock driver power supply).
47	DSGAT	I	Output stop (Same operation control as SLP when low).
48	PS	I	Parallel/serial switching for mode setting input method. (High: Parallel, Low: Serial) With pull-down resistor.

Electrical Characteristics

DC Characteristics

(Within the recommended operating conditions)

Item	Pins	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage 1	Vdd0, Vdd1,	VDDa		3.0	3.3	3.6	V
Supply voltage 2	AVD0	Voob		3.0	3.3	3.6	V
Supply voltage 3	AVD1	VDDC		3.0	3.3	3.6	٧
Supply voltage 4	AVD2	VDDd		3.0	3.3	3.6	V
Supply voltage 5	VH	VH		14.5	15.5	15.5	٧
Supply voltage 6	VM	VM		_	0.0	_	٧
Supply voltage 7	VL	VL		-9.0		-5.0	٧
Innut voltage 4	OKI	V _{IH1}		0.7VDDa			V
Input voltage 1	CKI	VIL1				0.3VDDa	V
Input voltage 2	TECTA DC	V _{IH2}		0.7Vpdb			٧
Input voltage 2	TEST1, PS	VIL2				0.3VDDa	٧
Input voltage 2	RST, TEST2, SEN, SSK, SSI,	Vt + 1		0.8VDDa			V
Input voltage 3	HRI, FRI, DSGAT	Vt – 1				0.2VDDa	V
Output voltage 1	CKO, MCK, 2MCK	Vон1	Feed current where IoH = −10.0mA	V _{DD} a - 0.8			V
Output voltage 1		Vol1	Pull-in current where IoL = 7.2mA			0.4	V
Output voltage 2	RG	Voн2	Feed current where IoH = −3.3mA	VDDb - 0.8			٧
Output voltage 2		VOL2	Pull-in current where IoL = 2.4mA			0.4	V
Output voltage 3	H1, H2	Vонз	Feed current where IoH = -22.0mA	VDDC - 0.8			V
Output voltage 3	111,112	Vol3	Pull-in current where IoL = 14.4mA			0.4	٧
Output voltage 4	XCPDM, XSHP, XSHD, XRS,	Vон4	Feed current where IoH = -3.3mA	VDDd - 0.8			V
Output voltage 4	PBLK, XCPOB	Vol4	Pull-in current where IoL = 2.4mA			0.4	V
Output voltage 5	ID, EXP, HRO,	Voн5	Feed current where IoH = −2.4mA	VDDa - 0.8			V
Output voltage 5	FRO	Vol5	Pull-in current where IoL = 4.8mA			0.4	V
Output voltage 6	SUB	Vон6	Feed current where IoH = -4.0mA	VH - 0.25			V
Output voltage o	30B	Vol6	Pull-in current where IoL = 5.4mA			VL + 0.25	V
Output voltage 7	V1, V3	Vом7	Feed current where IoH = −5.0mA	VM - 0.25			V
Output Voltage 7	V 1, V 3	Vol7	Pull-in current where IoL = 10.0mA			VL + 0.25	V
		Vом101	Feed current where IoH = −7.2mA	VH - 0.25			V
Output voltage 8	V2A, V2B	Vом102	Pull-in current where IoL = 5.0mA			VM + 0.25	V
Salpat voltage o	v Z M, v Z D	Vol8	Feed current where IoH = −5.0mA	VM - 0.25			V
		Vol8	Pull-in current where IoL = 10.0mA			VL + 0.25	V

Inverter I/O Characteristics for Oscillation

(Within the recommended operating conditions)

Item	Pins	Symbol	Conditions	Min.	Тур.	Max.	Unit
Logical Vth	OSCI	LVth			VDDa/2		V
	OSCI	ViH		0.7VDDd			V
Input voltage	0301	VIL				0.3VDDa	V
_	OSCO	Vон	Feed current where Ioн = -6.0mA	VDDa/2			V
Output voltage	0300	Vol	Pull-in current where IoL = 6.0mA			VDDa/2	V
Feedback resistor	OSCI, OSCO	RFB	VIN = VDDd or Vss	500k	2M	5M	Ω
Oscillator frequency	OSCI, OSCO	f		20		50	MHz

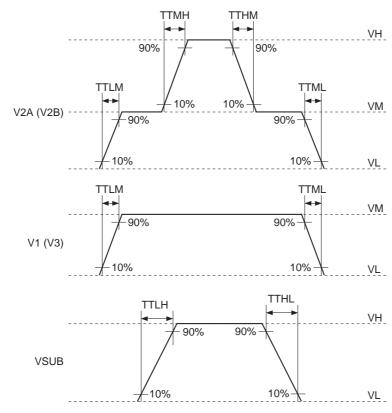
Base Oscillation Clock Input Characteristics

(Within the recommended operating conditions)

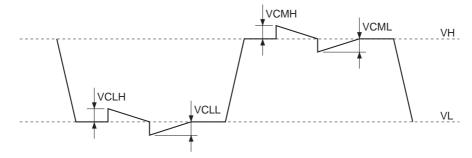
Item	Pins	Symbol	Conditions	Min.	Тур.	Max.	Unit
Logical Vth		LVth			VDDa/2		V
Input voltage	OKI	ViH		0.7VDDa			V
	CKI	VIL				0.3VDDa	V
Input amplification		Vin	fmax 50MHz sine wave	0.3			Vp-p

^{*1} Input voltage is the input voltage characteristics for direct input from an external source. Input amplification is the input amplification characteristics for input through capacitor.

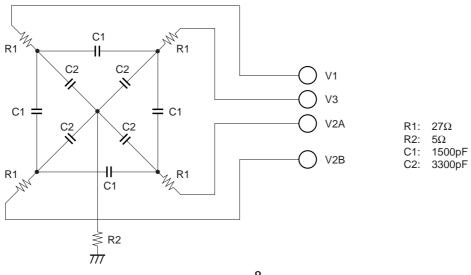
Switching Characteristics


(VH = 15.0V, VM = GND, VL = -8.5V)

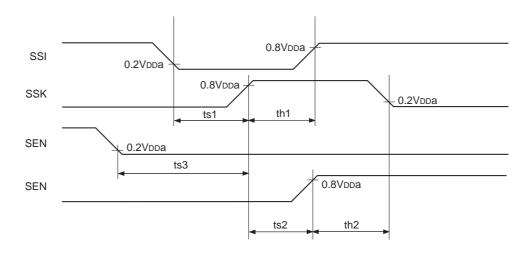
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
	TTLM	VL to VM		350	550	ns
Rise time	TTMH	VM to VH		450	700	ns
	TTLH	VL to VH		50	80	ns
	TTML	VM to VL		250	400	ns
Fall time	TTHM	VH to VM		300	450	ns
	TTHL	VH to VL		50	80	ns
	VCLH				1.0	V
Output noise voltage	VCLL				1.0	V
	VCMH				1.0	V
	VCML				1.0	V


^{*1} The MOS structure of this IC has a low tolerance for static electricity, so full care should be given for measures to prevent electrostatic discharge.

^{*2} For noise and latch-up countermeasures, be sure to connect a bypass capacitor (0.1μF or more) between each power supply pin (VH, VL) and GND.

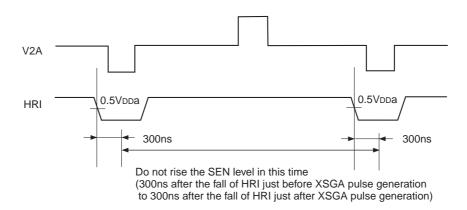

Switching Waveforms

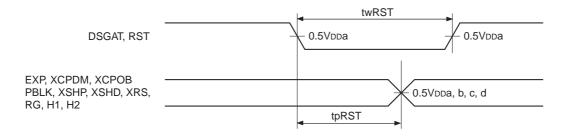
Waveform Noise



Measurement Circuit

AC Characteristics

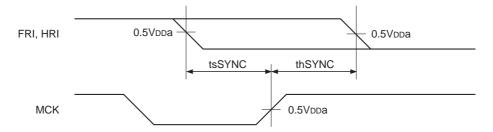

1) AC characteristics between the serial interface clocks


(Within the recommended operating conditions)

Symbol	Definition	Min.	Тур.	Max.	Unit
ts1	SSI setup time, activated by the rising edge of SSK	20			ns
th1	SSI hold time, activated by the rising edge of SSK	20			ns
ts2	SSK setup time, activated by the rising edge of SEN	20			ns
th2	SSK hold time, activated by the rising edge of SEN	20			ns
ts3	SEN setup time, activated by the rising edge of SSK	20			ns
fk	SSK frequency			7.5	MHz

2) Serial interface clock internal loading characteristics

3) Output timing characteristics using DSGAT and RST

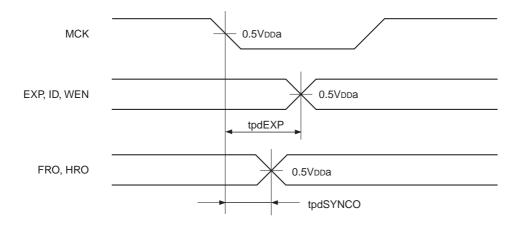

H1 and H2 load capacitance = 180pF

EXP, XCPDM, PBLK, XSHP, XSHD, XRS and RG load capacitance = 10pF

(Within the recommended operating conditions)

Symbol	Definition	Min.	Тур.	Max.	Unit
tpRST	Time until the above outputs reach the specified value after the fall of DSGAT and RST			75	ns
twRST	RST and DSGAT pulse width	10			ns

4) FRI and HRI loading characteristics



MCK load capacitance = 10pF

(Within the recommended operating conditions)

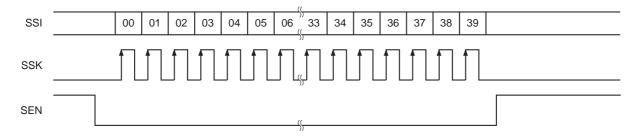
Symbol	Definition	Min.	Тур.	Max.	Unit
tsSYNC	FRI and HRI setup time, activated by the rising edge of MCK	5			ns
thSYNC	FRI and HRI hold time, activated by the rising edge of MCK	5			ns

5) Output variation characteristics of ID, WEN, EXP, FRO and HRO

EXP, ID and WEN load capacitance = 10pF

(Within the recommended operating conditions)

Symbol	Definition	Min.	Тур.	Max.	Unit
tpdEXP	Time until the WEN, ID and EXP outputs change after the fall of MCK	0.5		8.5	ns
tpdSYNCO	Time until the FRO and HRO outputs change after the fall of MCK	1.0		11.5	ns


Description of Operation

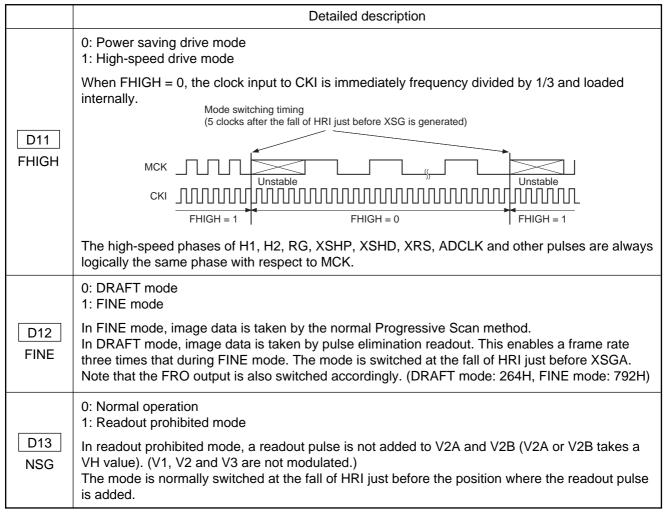
1. Progressive Scan CCD drive pulse generation

- Combining this IC with a crystal oscillator generates a fundamental frequency of 30.0MHz.
- CCD drive pulse generation is synchronized with HRI and FRI.
- The CCD drive method can be changed to various modes by inputting serial data or parallel data to the CXD2457R.
- The various drive methods possessed by the CXD2457R are shown in the Timing Charts A-1 to 4 (V rate) and B-1 to 6 (H rate).

2. Serial data input method

• All CXD2457R operations can be controlled via the serial interface. The serial data format is as follows.

Serial data format


Serial data

Data	Symbol	Function		When reset
D00 to D07	CHIP	Chip switching	See D00 to D07 CHIP.	All 0
D08 to D10	CTGRY	Category switching	See D08 to D10 CTGRY.	All 0
D11 to D31	DATA	Control data for each category The meaning of this CTGRY control data differs according to the category set by D08 to D10.	See D11 to D31 DATA.	All 0
D32 to D39	Checksum bits	Checksum bits	See D32 to D39 CHKSUM.	All 0

3. Serial data and description of functions

	Detailed description										
D00 to	The se								R when D00 and D07 are 1. However, this		
D07	D07	D06	D05	D04	D03	D02	D01	D00	Function		
CHIP	1	0	0	0	0	0	0	1	Loading to the CXD2457R		
	This C	TGRY	data i	ndicate	es the	functio	ns tha	t the s	erial interface data controls.		
	D10	D09	D08						Function		
D08	0	0	0	Mode	contr	ol data					
D10	0	1	0	Elect	ronic s	hutter	contro	l data			
CTGRY	0	1	1	High	-speed	l phase	e adjus	stment	data (Set all of D11 to D31 to 0.)		
	1	0	0	System setting data							
	Input	of value	es othe	er than	those	listed	above	is prol	nibited.		

CTGRY: Mode control data

Detailed description 0: Normal operation 1: FS mode In order to increase the frame rate, a certain portion of the captured image of CCD can be cut out by performing high-speed sweep. In FS mode, high-speed sweep is performed for the V registers of the entire image (period Z) after FRI input. Next, high-speed sweep is performed again for only the desired period (period X) after generating the XSGA pulse. Then, after performing normal V transfer and outputting the effective signal (period Y), high-speed sweep is performed for the entire image again by inputting FRI at the desired timing. This makes it possible to take only the desired portion in the V direction, thus effectively increasing the frame rate. Operation is fixed during period Z, with 22 lines swept every 1H and repeating over a 36H period. During period X, first XSGA is generated, then sweep operation starts. This period is set in serial data FVFS (system setting data: D21 to D26) in HRI units. Be sure to set FINE = 0 in this mode. D14 • When the frame rate is increased as the FS vertical effective signal Y line (example) Χ Sweep variable period (period X) Effective signal period (period Y) 1068 Sweep fixed period (period Z) Z Reset by FRI after Timing chart normal transfer FRI V2A 36H Set by FVFS (Fix) D15 Set to 0. to D16

to
D18
STB

Detailed description

Operation control settings

The operating mode control bits are loaded to the CXD2457R at the rise timing of the SEN input, and control is applied immediately.

D18	D17	Symbol	Control mode
0	0	CAM	Normal operation mode
0	1	SLP	Sleep mode (mode for the status where CCD drive is not required)
1	Х	STN	Standby mode

Pin status during operation control

Pin No.	Symbol	CAM	SLP	STN	RST*	Pin No.	Symbol	CAM	SLP	STN	RST*
1	СКО	ACT	ACT	ACT	ACT	25	MCK	ACT	ACT	ACT	ACT
2	Vss0	_	_	_	_	26	VDD1	_	_	_	_
3	CKI	ACT	ACT	ACT	ACT	27	2MCK	ACT	ACT	ACT	ACT
4	osco	ACT	ACT	ACT	ACT	28	TEST2	_	_	_	_
5	OSCI	ACT	ACT	ACT	ACT	29	SEN	ACT	ACT	_	_
6	VDD0	_	_	_	_	30	SSK	ACT	ACT	_	_
7	TEST1	_	_	_	_	31	SSI	ACT	ACT	_	_
8	AVD0	_	_	_	_	32	ID	ACT	L	L	L
9	RG	ACT	L	L	L	33	EXP	ACT	L	L	L
10	Vss1	_	_	_	_	34	HRO	ACT	ACT	L	L
11	Vss2	_	_	_	_	35	FRO	ACT	ACT	L	L
12	H1	ACT	L	L	L	36	Vss4	_	_	_	_
13	H2	ACT	L	L	L	37	HRI	ACT	ACT	_	_
14	AVD1	_	_	_	_	38	FRI	ACT	ACT	_	_
15	XCPDM	ACT	L	L	L	39	VM	_	_	_	_
16	AVD2	_	_	_	_	40	V1	ACT	VM	VM	VM
17	XSHP	ACT	L	L	L	41	V3	ACT	VM	VM	VM
18	XSHD	ACT	L	L	L	42	V2A	ACT	VH	VH	VH
19	XRS	ACT	L	L	L	43	VH		_	_	_
20	Vss3		_	_	_	44	V2B	ACT	VH	VH	VH
21	PBLK	ACT	L	L	L	45	SUB	ACT	VH	VH	VH
22	ХСРОВ	ACT	L	L	L	46	VL	_	_	_	_
23	ADCLK	ACT	L	L	L	47	DSGAT	ACT	ACT	L	L
24	RST	ACT	ACT	ACT	ACT	48	PS	ACT	ACT	ACT	ACT

^{*} See "6. RST pulse" for a detailed description of RST.

Note) ACT indicates circuit operation, and L indicates "low" output level in the controlled status. For sleep mode or standby mode, stop supplying VH and VL power supplies with CCD image sensor.

	Detailed description						
D19 EXPXEN	O: The EXP pulse indicating the exposure period is generated. 1: The EXP pulse indicating the exposure period is not generated, and is constantly fixed to low. This bit is invalid when STATUS = 1. Note that the STB setting has priority. The data is reflected at the rise of XSGA.						
D20 3MCK	0: 2MCK clock system 1: 3MCK clock system This bit switches how MCK is comprised from the clock selected by FHIGH. Note that the waveform is unstable for 5 clocks before and after switching.						
D21 to D23	Invalid data						
D24 to D28	Low-speed electronic shutter setting. The value set here is the number of FR during which readout operation is not performed even if there is input. The setting range is from 0 to 31. When set to 0, readout operation is performed at the first VR. When FS = 1, this bit is invalid.						
VSHUT	MSB LSB Function D28 D27 D26 D25 D24 Number of FR during which readout operation is not performed						
D29 to D31	Invalid data						

CXD2457R clock system

When using a 30MHz crystal

	FHIGH	змск	FINE	MCK frequency	2MCK pin output	Frame rate
Mode1	1	0	1	15MHz	30MHz	15Frame/s
Mode2	1	1	0	10MHz	15MHz	30Frame/s
Mode3	0	0	0	5MHz	10MHz	15Frame/s
Mode4	1	0	0	15MHz	30MHz	45Frame/s
Mode5	1	1	1	10MHz	15MHz	10Frame/s

Note) Combinations of FHIGH, 3MCK and FINE other than those listed above are prohibited.

CTGRY: Electronic shutter control data

		Detailed description							
High-speed electronic shutter setting. The value set here is the number of SUB pulses from FR to the next FR.									
D20	MSB	MSB LSB Function							
HSHUT	D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 Number of SUB pulses setting								
to D31	Input 0.								

High-speed and low-speed electronic shutter can be used together. Therefore, the exposure time is as follows:

FR cycle \times VSHUT + (fv – HSHUT) \times HR cycle + 745/MCK frequency [Hz] = Exposure time [s] (fv: Number of HR in 1FR)

CTGRY: System setting data

			Detailed des	cription		
D11 SGXEN	O: Internal SSG (Sync Signal Generator) functions operate to generate FRO and HRO. 1: Internal SSG functions are stopped, and the FRO and HRO pulses are fixed to low. Note that the STB setting has priority. When the sync signal is input from external CXD2457R, use it at SGXEN = 1.					
D12 EXSG	0: Normal operation 1: XSGA and XSGB are Note that the amplitude					
	These bits select the pu	lse out	put from the ID pin.			
			D	14]	
D13			0	1		
to D14	D40	0	ID pulse output	WEN pulse output		
IDSEL	D13	1	XSUB pulse output	ID pulse output		
	XSUE	3: Inve	rted SUB pulse outpu	ıt at the amplitude of	Vss to Vdda	
D15 VTXEN	O: VT (readout clock) is added to V2A, V2B and V3 as normal. 1: VT is not added to V2A, V2B and V3. During readout, only the modulation necessary for readout is performed. Note that this setting has priority over mode control data NSG (D13). O: Checksum is not performed and the checksum data is invalid. (However, dummy data must be					
CHKSUM	set in the CHKSUM re 1: Checksum is perform			en if the checksum r	esults are NG.	
D17 STATUS	0: The EXP pulse is output 1: High is indicated if the This pulse is output at the over mode control data	e checl ne rise	ksum results are OK,			
to D20	Input 0.					
to D26 FVFS	These bits set the high-set MSB D26 D25 D24 D25 The high-speed sweep in the	B D22	LSB 2 D21	,		

	Detailed description
D27 XVCK	0: Normal operation 1: V1, V2 and V3 are inverted and output as XV1, XV2 and XV3. The amplitude is from VL to VM.
D28 to D31	Invalid data

CHKSUM

	Detailed description									
	These a	are the	check	ksum b	its.					
D32 to D39	+) [Serial d Data is	MSB D07 D15 D23 D31 D39	D06 D14 D22 D30 D38	D05 D13 D21 D29 D37	D04 D12 D20 D28 D36	al regi	If sters o	only whum is N	nen che	→ CHKSUM the checksum results are OK. ecksum is OK. s OK and the data is reflected to the

4. Shutter speed setting specifications when PS = H

When PS = H, the CXD2457R can be controlled without inputting serial data by using the SEN, SSK and SSI pins.

Pin			Wh	en L			When H	
SEN	FHIGH (horizontal CCD drive frequency)	Serial reg	Serial registers FHIGH and 3MCK = 0. Serial registers FHIGH = 1 and 3MCK = 0.					d
SSK	FINE (readout method)	_	Serial register FINE = 0 and the CXD2457R operates in DRAFT mode. Serial register FINE = 1 and the CXD2457R operates in FINE mode.					
SSI	HSHUT, VSHUT (exposure time)		SEN	L H		SSK per numbe	777 727 745 596 r: When SSI = H (1/25 r: When SSI = L (1/60)	· ·

Other registers hold the value input when PS = L, and assume the status indicated by STB when the RST pulse is input.

5. Reflective position of each data

Each serial data is reflected at the timing shown in the table below. The reflection position is the same when PS = H. When using the low-speed electronic shutter, the data is not reflected at FR where XSGA is not generated (a readout pulse is not added to V2A).

Table 5-1. Serial data reflection timing

Data	Reflection position
Mode control data (STB)	SEN rise
Mode control data (EXPXEN)	XSGA pulse rise
Mode control data (other than STB and EXPXEN)	HRI*1 fall just before XSGA pulse generation
Electronic shutter control data	HRI*2 fall just after XSGA pulse generation
High-speed phase adjustment data	HRI*1 fall just before XSGA pulse generation
System setting data (SGXEN)	SEN rise
System setting data (other than SGXEN)	HRI*1 fall just before XSGA pulse generation

^{*1} For FS mode, 7HRI later from FRI fall

6. RST pulse

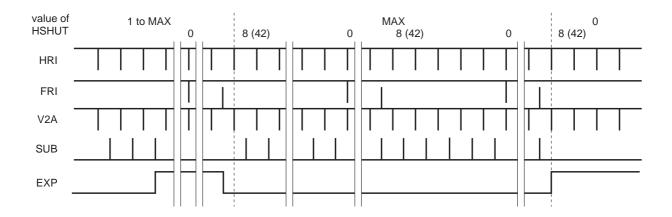
Setting Pin 30 to low resets the system. The serial data values after reset are as shown in the "Serial data" table.

Also, some internal circuits stop operating when RST = L. For a description of the pin status when RST = L, see the "Pin status during operation control" table given in the detailed description of STB under "3. Serial data and description of functions".

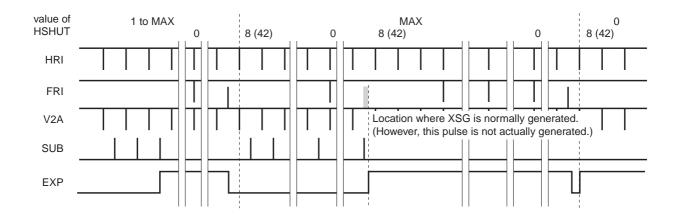
7. DSGAT

DSGAT is ON when low and the CXD2457R is set to sleep mode as with SLP of STB.

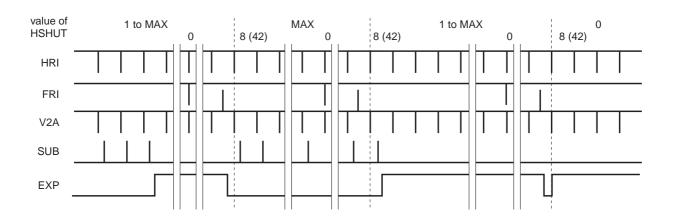
Note that control is applied when either or both of DSGAT and SLP are ON. Also, when STN is ON, the CXD2457R is set to standby mode regardless of the DSGAT status.


8. EXP pulse

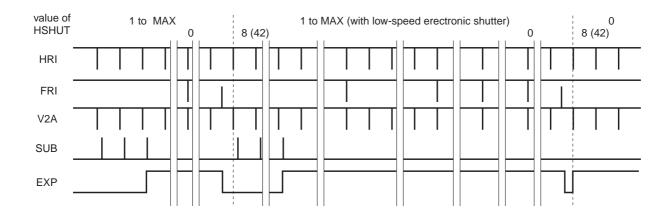
The EXP pulse indicates the exposure period.


The details are shown on the following pages.

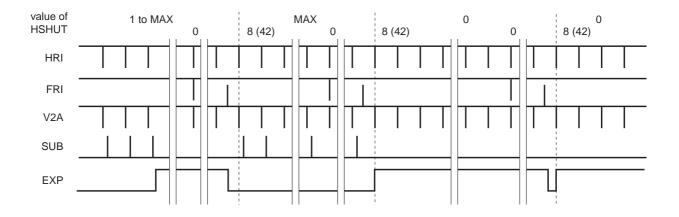
^{*2} For FS mode, 8HRI later from FRI fall


(1) HSHUT ≥ MAX

(2)HSHUT ≥ MAX (with low-speed erectronic shutter)



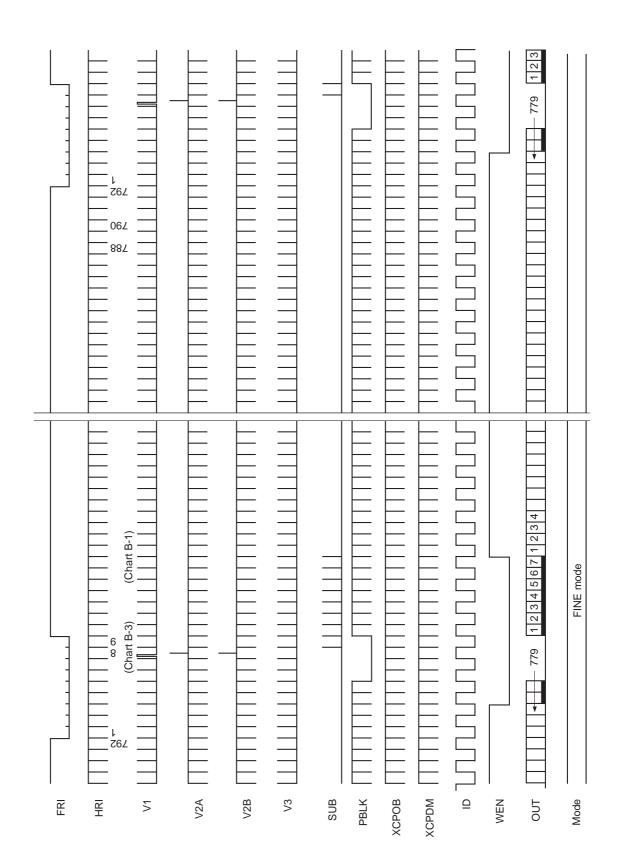
(3) $1 \le HSHUT < MAX$

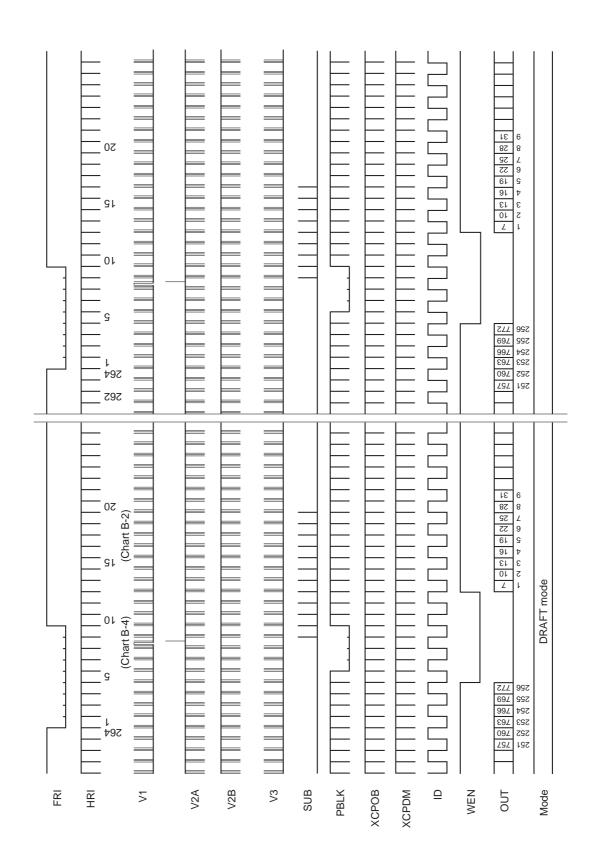


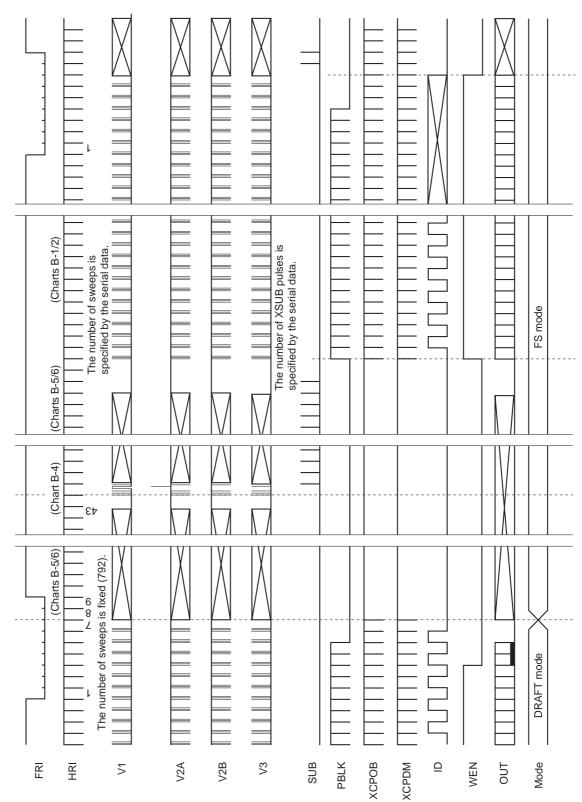
Numbers in parentheses are for FS mode.

(4) 1 ≤ HSHUT < MAX (with low-speed erectronic shutter)

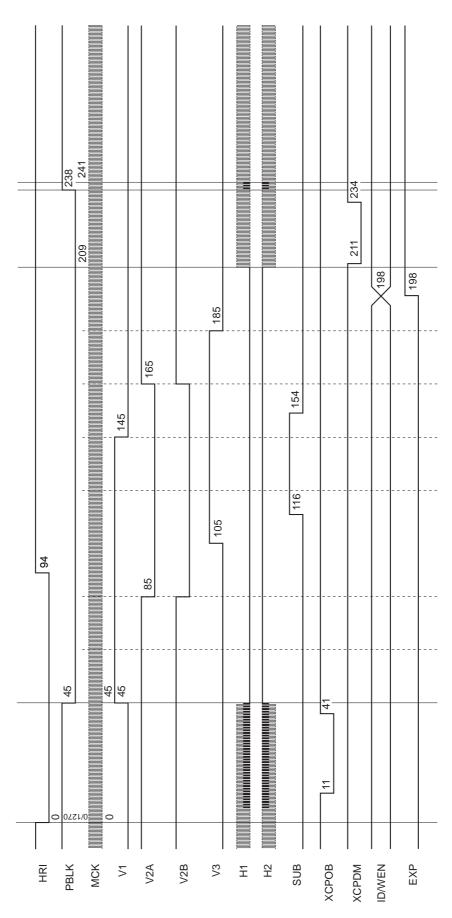
(5) HSHUT = 0

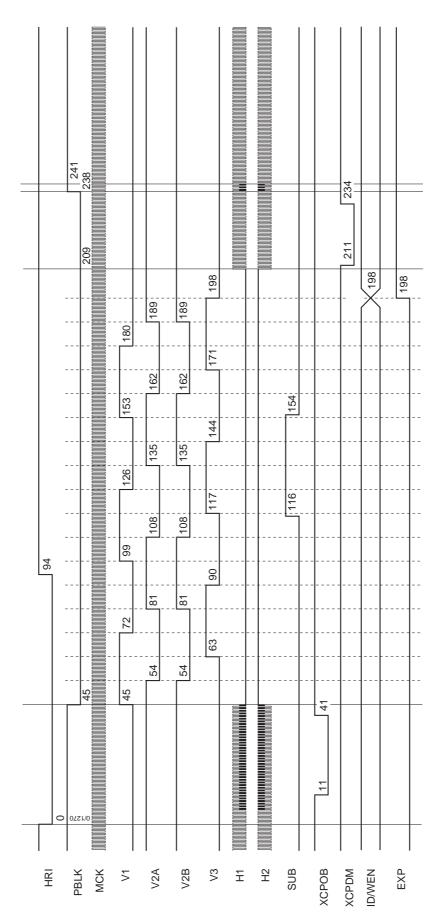



(6) HSHUT = 0 (with low-speed erecyronic shutter)



Numbers in parentheses are for FS mode.





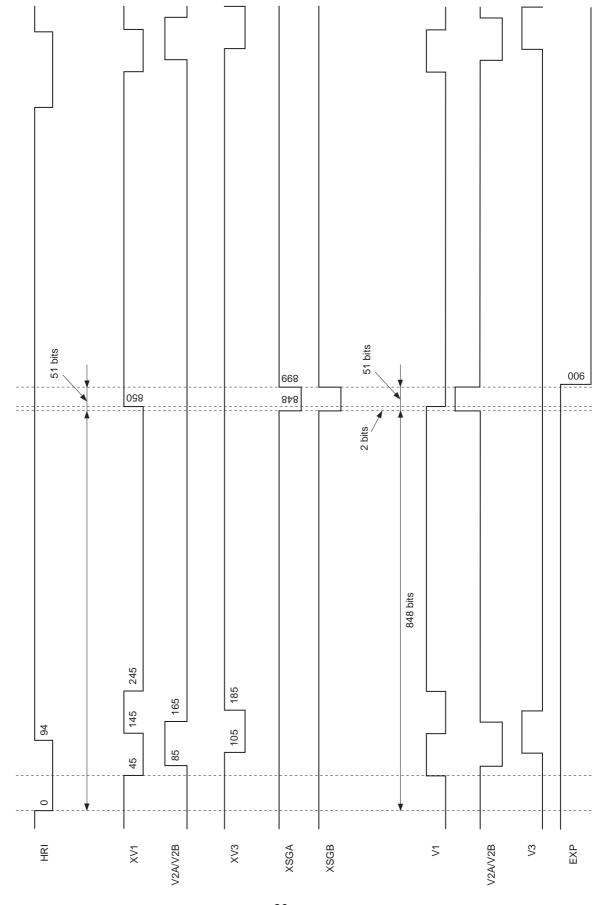

The mode is switched at the point where XSG is normally generated.

Chart A-4. FINE Mode (Vertical synchronization) Low-speed electronic shutter

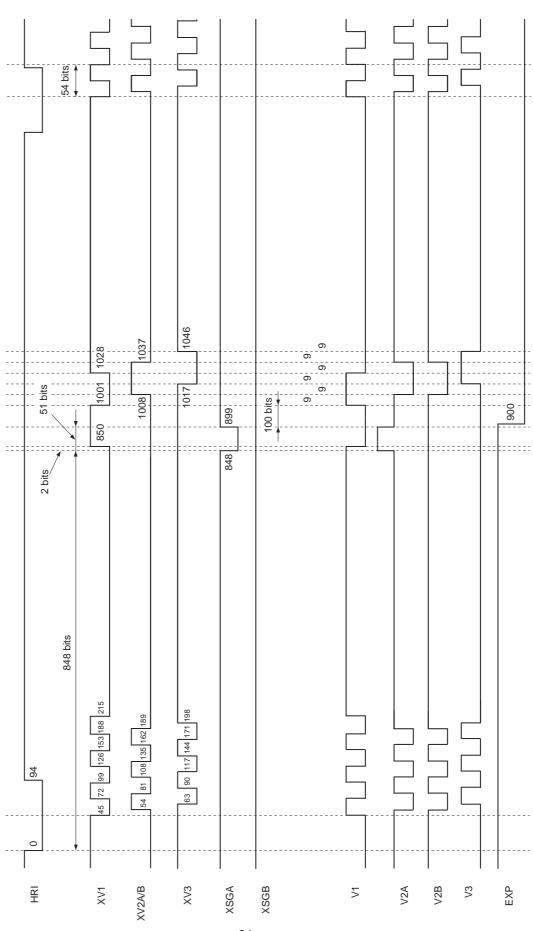
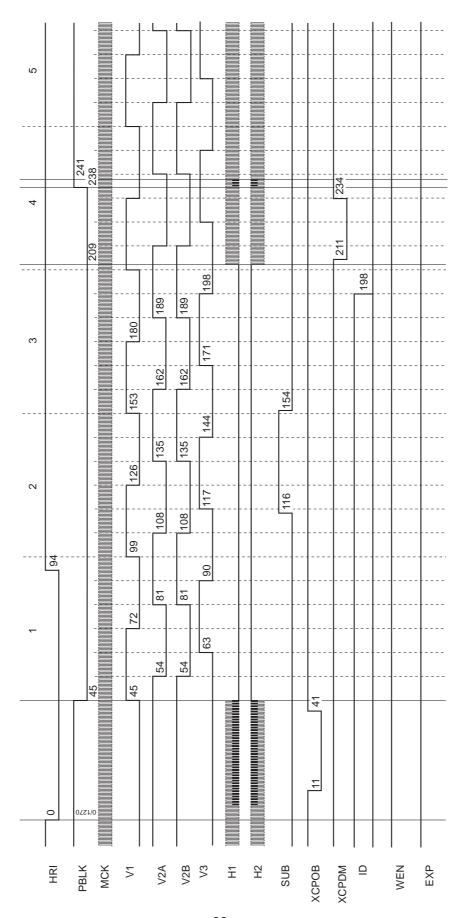
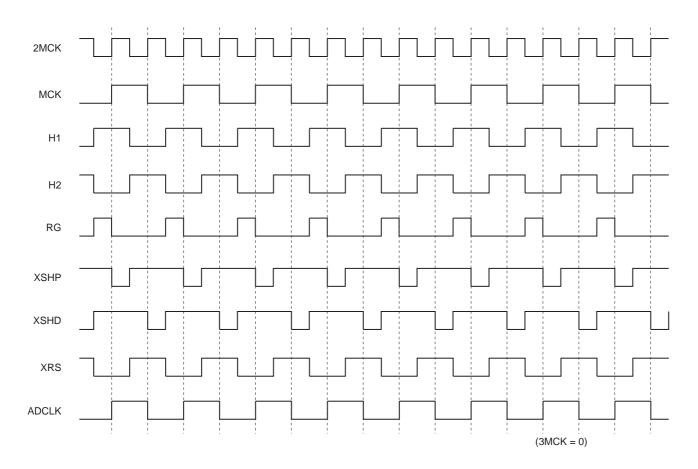
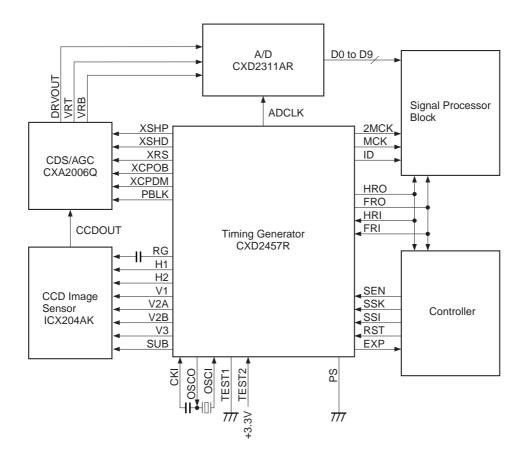
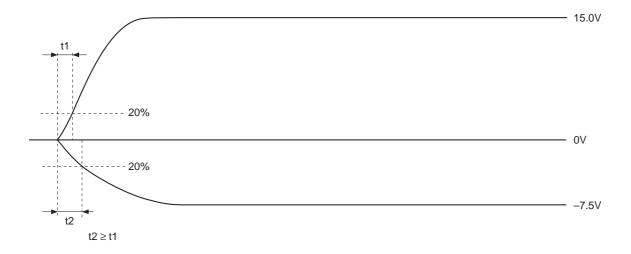




Chart B-5. FS Mode: V clock continuous drive start (Horizontal synchronization)



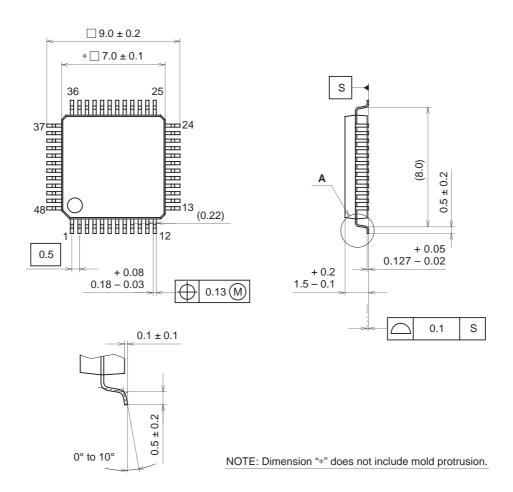
Logical Phase

Application Circuit



For making FR and HR outside the CXD2457R, configure a circuit that counts MCK. (Using 2MCK, CKO, etc. is not recommended.) Also, set system setting data, SGXEN (D11) to "1" and stop a built-in SSG. Use crystal oscillator (fundamental wave) as base oscillation. Be sure to input duty 50% pulse when crystal oscillator is used.

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.


Notes on Turning Power ON

To avoid setting VSUB pin of the CCD image sensor negative potential, the former two power supplies should be raised by the following order among three power supplies, –7.5V, +15.0V and +3.3V.

Package Outline Unit: mm

48PIN LQFP (PLASTIC)

DETAIL A

SONY CODE	LQFP-48P-L01
EIAJ CODE	LQFP048-P-0707
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM PLATING
LEAD MATERIAL	42/COPPER ALLOY
PACKAGE MASS	0.2g